CROSS CREEK STREAM RESTORATION MONITORING REPORT (YEAR 2 OF 5)

Cumberland County, North Carolina NCEEP Project Number 105

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: Final Submission Date: March 2008 Monitoring Firm:

Stantec Consulting Services Inc 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

EXECUTIVE SUMMARY

Project Background

The North Carolina Ecosystems Enhancement Program (EEP) restored 2,090 linear feet of the Cross Creek stream channel located within the City of Fayetteville, North Carolina. The site was constructed between the dates of March of 2004 to January 2005. The following report provides the monitoring information for Year 2 of the stream restoration project. The project consists of portions of two tributaries of the Cape Fear River, Little Cross Creek and Cross Creek. Both are located within the city limits of Fayetteville on City property southwest of Fayetteville State University's Campus in Cumberland County, North Carolina. Both creeks have been impacted from development and had lost ecological functions related to water quality and biological habitat.

The Priority 2 restoration involved re-establishing the floodplain at a lower elevation so that the floodplain can be accessed during storm events above bankfull. The natural meander patterns were restored based on reference reach data. Rock grade control vane structures and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability.

Vegetation Assessment

On September 20, 2007 and October 1, 2007 the Year 2 vegetation monitoring was completed using the Carolina Vegetation Survey (CVS) – EEP protocol (version 4.1) on eight monitoring plots previously established by Earth Tech. The Level 2 survey (planted and natural stems) methodology was utilized. While five plots met the 3-year success criteria of 320 trees/acre, three plots (103, 107, and 108) did not. If planted shrubs are used in calculating success then all plots would be successful. Plots 107 and 108 met success criteria last year but are in an area now dense with kudzu. Plots 101 and 105 did not meet success criteria last year but do this year; possibly due to discrepancies in past data collection. Kudzu is a major problem along the majority of the site, primarily along Little Cross Creek. It should be removed as soon as possible with either mechanical and/or chemical treatment to ensure future vegetative success. A few small areas of Chinese privet are also present onsite.

Stream Assessment

On June 28, 2007 and July 4, 2007 Stantec completed the Year 2 monitoring surveys for the two restored reaches. The locations of the cross sections for the riffles and pools set by Earth Tech were unable to be located in the field. With several searches for the cross sections, and with the lack of data, six new cross sections for riffles and pools were placed; 2 for Little Cross Creek and 4 for Cross Creek.

The assessment found Little Cross Creek Tributary to be stable and performing as intended with only small minor problem areas, while the Cross Creek stream reach was found to have major problem areas and is considered at this point to be unstable and currently does not meet the success requirements.

The Cross Creek stream reach major problem areas include a failure of the stormwater channel plunge pool as well as a failure of an adjacent wetland pond located on the right bank near station 21+60. The stormwater channel is undergoing massive erosion and bank migration. Failure has occurred at the outlet entering into the main reach of the stream in the form of a scour hole, depositing sediment directly into the main reach from erosion of the stormwater channel. The construction plans call the channel width of the storm water channel to be 20 feet, however the surveyed measurement was found to be 40 feet. It is clear that the channel cannot currently hold the velocities and flow capacity of the discharge outflowing

from the stormwater pipe. The failure of the wetland pond is directly influenced and caused by the failure of the stormwater channel. A failure from the wetland pond's outlet to the main reach along with overbank flow has occurred producing massive erosion.

It is strongly recommended that this area of the restoration project be re-resigned. The flow exiting the stormdrain (and the energy associated with that flow) is too great for the current design. A flow splitter is recommended to divert large storms around the facility and into a bypass channel. The bypass channel should be designed to convey large flows and should utilize grade control structures for stabilization and for the benefit of the receiving stream reach. Redesigning this area will decrease downstream velocities and restore habitat in the wetland area.

Minor problem areas (SP 1-8, 11-18) were also found across the project and they can be defined into four subcategories: structure failure, root wad failure, toe scour, and bank erosion. These problem areas can be remediated by additional plantings and/or minor hand grading of the banks.

Table of Contents

Exec	cutive	Summary	.i
1.0	Pro	ject Background	. 1
1.	1	Project objectives	. 1
1.	2	Project structure	. 1
1.	3	Location and Setting	.2
1.	4	Project History and Background	.4
1.	5	Monitoring Plan View	6
2.0	Pro	ject Condition and Monitoring Results	9
2.	1	Vegetation Assessment	9
	2.1.1	Vegetation Problem Areas	,9
	2.1.2	Vegetation Current Condition Plan View	9
2.	2	Stream Assessment	0
	2.2.1	Hydrology	0
	2.2.2	Bank Stability	0
	2.2.3	Stream Problem Areas	0
	2.2.4	Stream Current Condition Plan View	1
	2.2.5	Stability Assessment	1
	2.2.6	Quantitative Measures Summary	12
3.0	Ref	Perences	.7

Appendix A. Vegetation Raw Data

Appendix B. Geomorphologic Raw Da	B. Geomorphologic Raw Data	eomorphologic Raw Data
-----------------------------------	----------------------------	------------------------

Appendix C. Wetland Data (N/A)

Appendix D. Integrated Current Condition Plan Views

The project consists of portions of two tributaries to the Cape Fear River, Little Cross Creek and Cross Creek. Both are located within the city limits of Fayetteville on public lands southwest of Fayetteville State University's Campus in Cumberland County, North Carolina.

1.1 PROJECT OBJECTIVES

Project goals and objectives for the Cross Creek and Little Cross Creek Stream Restoration:

- Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load;
- Provide the stream with a floodplain at the stream's current elevation:
- Improve aquatic habitat with the use of natural material stabilization structures such as root wads, rock vanes, woody debris and a riparian buffer.
- Provide wildlife habitat and bank stability though the creation of a riparian zone.

1.2 PROJECT STRUCTURE

The project consists of portions of two tributaries of the Cape Fear River, Little Cross Creek and Cross Creek. Both are located within the City Limits of Fayetteville on City-owned property southwest of Fayetteville States University's Campus in Cumberland County, North Carolina. The watershed area for this project is 25.5 square miles.

The restoration site is located entirely within a highly developed area of Fayetteville. Land immediately adjacent to the restoration site is undeveloped, grass coved land included in the Martin Luther King Jr. Park expansion. There are both water and sewer utilities within the project limits.

Prior to construction, both Cross Creek and Little Cross Creek had been impacted from development and had lost ecological functions related to water quality and biological habitat. The main factors in the degradation and impairment of the streams were the historical straightening of the channels and the filling of their floodplains. Both reaches within the project limits were classified as G5 type channels.

The Priority 2 restoration involved converting the 2,000 ft impaired channel into a sinuous channel that meanders for a total of 2,090 linear feet of stream (Exhibit Table I). The project also involved reestablishing the floodplain at a lower elevation to provide access to high stream flows. Rock grade control vane structures and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability. A riparian buffer that varies in width from 10 feet to 280 feet was planted with native vegetation and protected by a Conservation Easement.

		Cre	Exhibi oss Cr	it Table I eek Strea	. Project m Resto	t Restor ration -	ation Components EEP Project No. 105	;	
Reach ID	Existing Feet/Acres	Type	Approach	Footage or Acreage	Mitigation Ratio	Mitigation Units	Stationing	Comment	
Cross Creek	1295	R	P2	1376.0	1.0	1376.0	11+4.00 to 25+16.58	Instream structures and vegetated buffers	
Little Cross Creek	705	R	P2	714.0	1.0	714.0	10+00 to 17.13.687	Instream structures and vegetated buffers	
Mitigation Unit Summations									
Stream (lf)	Riparian Wetland (ac)		Non Wetl	Nonriparian Wetland (ac)		Vetland c)	Buffer (ac)	Comment	
2090.0	0.	.0		0.0	0.	.0	0.0		

R = Restoration

P2 = Priority 2

1.3 LOCATION AND SETTING

The restoration site is located within the City of Fayetteville, North Carolina on public land. The restoration site is located entirely within a highly developed area of Fayetteville. The property is located off of the Martin Luther King Freeway (formerly the C.B.D. Loop), between Murchison Road and Bragg Boulevard. Washington Drive and Blue Street, both off of Murchison Road, surround the project site. The site can be accessed from either Washington Drive or Blue Street (Figure 1).

Exhibit Table II. Project Activity and Reporting History Cross Creek Stream Restoration - EEP Project No. 105												
Activity or Report	Data Collection Complete	Actual Completion or Delivery										
Restoration Plan	2002	Oct 2002										
Final Design - 90%	NA	2004										
Construction	2004	Jan 2005										
Temporary S&E mix applied to entire project area	2004	2004										
Permanent seed mix applied to entire project area	2004	2004										
Containerized and B&B plantings	Jan 2005	Jan 2005										
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	Apr 2006	Jul 2006										
Year 1 Monitoring	Nov 2006	Dec 2006										
Year 2 Monitoring	Oct 2007	Dec 2007										
Year 3 Monitoring	NA	NA										
Year 4 Monitoring	NA	NA										
Year 5 Monitoring	NA	NA										

1.4 PROJECT HISTORY AND BACKGROUND

Exhibit Table III. Project Component Table Cross Creek Stream Restoration - EEP Project No. 105 igner Earth Tech 701 Corporate Center Drive, Suite 475 Raleigh, NC 27607 nary project design POC Bill Jenkins, PE (919) 854-6200 istruction Contractor Backwater Environmental 2312 New Bern Ave. Raleigh, NC 27610 istruction contractor POC Wes Newell (919)231-9227 nting Contractor 908 Indian Trail Road Edenton, NC 27932 nting Contractor POC Mary-Margaret McKinney (252)482-8491 ding Contractor POC Mary-Margaret McKinney (252)482-8491 ding Contractor POC Mass Newell (919)231-9227 d Mix Sources Ernst Conservation Seeds 9006 Mercer Pike Meadville, PA 16335 Stacy Charles (814)336-2404 Stacy Charles (814)336-2404 Stacy Charles (814)336-2404 Conservation Nursery (container plants) 3067 Conners Drive Edenton, NC 27932 Ellen Colodney (
Cross Creek Stream R	estoration - EEP Project No. 105											
Designer	Earth Tech											
	701 Corporate Center Drive, Suite 475											
	Raleigh, NC 27607											
Primary project design POC	Bill Jenkins, PE (919) 854-6200											
Construction Contractor	Backwater Environmental											
	2312 New Bern Ave.											
	Raleigh, NC 27610											
Construction contractor POC	Wes Newell (919)231-9227											
Planting Contractor	Carolina Silvics, Inc.											
	908 Indian Trail Road											
	Edenton, NC 27932											
Planting Contractor POC	Mary-Margaret McKinney (252)482-8491											
Seeding Contractor	Backwater Environmental											
	2312 New Bern Ave.											
	Raleigh, NC 27610											
Seeding Contractor POC	Wes Newell (919)231-9227											
Seed Mix Sources	Ernst Conservation Seeds											
	9006 Mercer Pike											
	Meadville, PA 16335											
	Stacy Charles (814)336-2404											
Nursery Stock Suppliers	Coastal Plain Conservation Nurserv (container plants)											
- · · · · · · · · · · · · · · · · · · ·	3067 Conners Drive											
	Edenton NC 27932											
	Ellen Colodney (252)482-5707											
	Ellen Colodicy (252)462-5767											
	Cure Nursery (container plants)											
	880 Buteo Road											
	Pittshore NC 27312											
	$\begin{array}{c} 1 \text{ (III)} 1 \text{ (III)}$											
	Jemmer Cure (919)542-0180											
	Taylor's Nursan											
	2705 Now Dome Avenue											
	Deleich NC 27(10											
	Raleign, NC $2/610$											
	Richard Taylor (919)231-6161											
	International Paper											
	55594 Hwy38 S											
	Blenheim, SC 29516											
	Gary Nelson (1-800-222-1290)											
Monitoring Performers (Year 0-1)	Earth Tech											
	701 Corporate Center Drive, Suite 475											
	Raleigh, NC 27607											
Monitoring POC	Ron Johnson (919)854-6210											
Monitoring Performers (Year 2)	Stantec Consulting Services, Inc.											
	801 Jones Franklin Road, Ste 300											
	Raleigh, NC 27606											
Stream Monitoring POC	David Bidelspach (919)851-6866											
Vegetation Monitoring POC	Amber Coleman (919)851-6866											
Wetland Monitoring POC	NA											

Exhibit Table IV. Project Background Table										
Cross Creek Stream H	Restoration - EEP Project No. 105									
Project County	Cumberland									
Drainage Area										
Little Cross Creek/Cross Creek	10.5/25.5 sq mi									
Drainage impervious cover estimate (%)	71%									
Stream Order										
Cross Creek/Little Cross Creek	2nd/1st									
Physiographic Region	Sandhills/Coastal Plain									
Ecoregion	Atlantic Southern Loam Plains									
Rosgen Classification of As-built	С									
Cowardin Classification	Riverine									
Dominant soil types	Chewacla loam									
	Rion fine sandy loam									
Reference site ID	Country Club Branch and Little Rockfish Creek									
USGS HUC for Project	03030004									
USGS HUC for Reference	03030004									
NCDWQ Subbasin for Project	03-06-15									
NCDWQ Subbasin for Reference	03-07-01									
NCDWQ Classification for Project	Cross Creek (C), Little Cross Creek (C)									
NCDWQ Classification for Reference	UT Cross Creek (Country Club Branch, C), Little Rockfish Creek C									
Any portion of any project segment 303d listed?	Yes									
Any portion of any project segment upstream of a 303d										
listed segment?	Yes									
Reasons for 303d listing or stressor	Imparied Biological Activity, fecal coliform									
% of project easement fenced	0%									

1.5 MONITORING PLAN VIEW

See Figure 2 for the Monitoring Plan View.

annaith Britisti			50 0 50 100	SCALE	FIT 21.22 THE ENSING OUTSING OUTSING STORE AND THE ENSING OUTSING STORE AND	TRANSPORTED TO A CONTRACT OF A	08-2 -78.892525 35.066291	08-1 -78.892383 35.066258	07-1 -78.89257 35.066475 07-2 -78.892703 35.066407	06-2 -78.891447 35.064824	05-2 -78.892013 35.067371	04-2 -78.892083 35.06532 05-1 -78.891999 35.067242	04-1 -78.892009 35.066207	03-1 -78.891908 35.0658 03-2 -78.892049 35.065808	02-2 -78.89199 35.065747	02-1 -78.891842 35.06573	01-1 -78.891839 35.065273	t Long Lat		ipin 35.066454 -78.892642	ipin 35.066592 -78.892872	hpin 35.064861 -78.891351	Spin 35.065356 -78.891837	spin 35.065326 -78.891713	Ipin 35.067097 -78.891903	pin 35.067308 - /8.891863 היה אה האדיגע - /8.891863		OSS SECTION PIN COORDINATES
	DRAWING N	FILENAME	PROJECT N	DATE	CROSS CREEK	CROSS CI	REE	<				T				1 DR	AFT RE	/ISION 2	DESIGN						DAB	TXB	07/10	3/06
	5	CROSSCREEK.dwg	40,	70/ 20/	SOURCE – EARTH TECH STREAM RESTORATION CONSTRUCTION PLANS C-3, 12/24/03, UPDATED 1/4/04	STREAM RESTOR FIGURE 2- MONITOR	CROSS CREEK STREAM RESTORATION (FIGURE 2- MONITORING PL					antec Cor ite 300, 4 aleigh, NC I. 919.851 ix. 919.851 ww.stantec	nsuiting : 801 Jone 27606 .6866 .7024 c.com	Services li Is Franklin	Rd	10				REVISIO	ONS				DRN	СНК	DA	TE

Back of 11x17

2.1 VEGETATION ASSESSMENT

Vegetative sample plots were quantitatively monitored during the first growing season. Eight $100m^2$ plots were established throughout the project. In each plot, all four plot corners were permanently located with conduit. Species composition, density, and survival were monitored during Year 0 and Year 1. On September 20, 2007 and October 1, 2007 the Year 2 vegetation monitoring was completed using the Carolina Vegetation Survey (CVS) – EEP protocol (version 4.1). The Level 2 survey (planted and natural stems) methodology was utilized.

As per the mitigation plan, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of the year 5 monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted trees per acre at the end of year 3 of the monitoring period.

The Year 2 stem counts within each of the vegetative monitoring plots are included in Exhibit Tables A1 through A5 in Appendix A.

2.1.1 Vegetation Problem Areas

Kudzu is a major problem along the majority of the site, particularly along Little Cross Creek. It should be removed as soon as possibly with either mechanical and/or chemical treatment to ensure future vegetative success. A few small areas of Chinese privet, mimosa and Johnson grass are also present onsite. For more details see Exhibit Table A6 as well as accompanying photos provided in Appendix A.

Plots 103, 107 and 108 do not meet the success criteria of 320 trees per acre. This is a change from last year when plots 101, 103, and 105 did not meet success criteria. This may possibly be due to discrepancies in past data collection. In at least a few occurrences, plants were found during year 2 that were obviously planted but were not in the table for year 1. Vegetation plots 107 and 108 are suffering the consequences of a heavy kudzu invasion. If both planted shrubs and trees were to be counted in the vegetative success criteria then all of the plots would be well above the required 320 stems per acre.

2.1.2 Vegetation Current Condition Plan View

Vegetative problem areas are shown on the Integrated Current Condition Plan View in Appendix D.

2.2 STREAM ASSESSMENT

2.2.1 Hydrology

The region has been in an extreme drought for much of 2007. No evidence of bankfull flows was observed onsite and flows were not measured with peak stage recorders. According to the Year 1 monitoring report, evidence of at least one bankfull event was observed during last year's monitoring. However, it is unclear if this has been verified. In order to verify bankfull events, a crest gauge should be installed onsite.

	E Cros	xhibit Table V. Verification of Ban s Creek Stream Restoration - EEP	kfull Events Project No. 105										
Date of Data Collection	Date of Occurrence	Method	Photo #										
2007	2007 None NA NA												

2.2.2 Bank Stability

According to the NCEEP guidelines for monitoring, bank stability assessments will be performed during year 5 monitoring. Bank stability will be assessed using the near bank stress (NBS) assessment and bank erodibility hazard index (BEHI).

Exhibit Table VI. BEHI and Sediment Export Estimates Cross Creek Stream Restoration - EEP Project No. 105

Bank stability will be assessed in monitoring Year 5

2.2.3 Stream Problem Areas

The major problem areas for this project are a failure of a stormwater channel plunge pool [Stream Problem Area (SP) 9] and a failure of a wetland pond (SP 10). This pond lies adjacent to the stormwater channel in the lower reach of Cross Creek (Photo 1 in Appendix B3 of Appendix B and Appendix D. Integrated Problem Areas Plan View). The stormwater channel has produced massive erosion and bank migration (Appendix B3. Photo 2). Failure has occurred at the confluence of the stormwater channel and Cross Creek in the form of a blow hole. Sediment is being deposited directly into the main reach from erosion of the stormwater channel (Appendix B3. Photo 3). The original design for this feature called for a plunge basin, field observation indicates that this was either improperly designed or not constructed properly. The channel cannot currently hold the velocities and flow capacity of the discharge from the stormwater channel has in turn caused failure to the wetland pond (Appendix B3. Photos 4 and 5). Currently, the wetland is receiving overflow from the stormwater channel and the increased flow has caused erosion and channel migration in the wetland much like that in the stormwater channel. A failure at the wetland pond's outlet to the main reach and overbank flow has also occurred.

It is strongly recommended that this area of the restoration project be re-resigned. The flow exiting the stormdrain (and the energy associated with that flow) is too great for the current design. A flow splitter is

recommended to divert large storms around the facility and into a bypass channel. The bypass channel should be designed to convey large flows and should utilize grade control structures for stabilization and for the benefit of the receiving stream reach. Redesigning this area will decrease downstream velocities and restore habitat in the wetland area. See Exhibit Table B1 as well as accompanying photos provided in Appendix B.

Minor problem areas (SP 1-8, 11-18) were also found across the project and they can be defined into four subcategories: structure failure, root wad failure, toe scour, and bank erosion. These problem areas can be remediated by additional plantings and/or minor hand grading. See Exhibit Table B1 and representative photos in Appendix B as well as the map in Appendix D for more information.

2.2.4 Stream Current Condition Plan View

Stream problem areas are shown on the Integrated Current Condition Plan View in Appendix D.

Exhibit Table VII-A. Categorical Stream Feature Visual Stability Assessment														
Cross Creek Stream Restoration - EEP Project No. 105 (Cross Creek)														
FeatureInitialMY-01MY-02MY-03MY-04MY-05														
A. Riffles	95%	60%	83%											
B. Pools	100%	100%	79%											
C. Thalweg	100%	90%	94%											
D. Meanders	100%	NA	81%											
E. Bed General	95%	95%	86%											
F. Bank Condition	NA	NA	82%											
G. Vanes / J Hooks, etc. 95% 100% 70%														
H. Wads and Boulders 100% 90% 25%														

2.2.5 Stability Assessment

Exhibit Table VII-B. Categorical Stream Feature Visual Stability Assessment Cross Creek Stream Restoration - EEP Project No. 105														
(Little Cross Creek)														
FeatureInitialMY-01MY-02MY-03MY-04MY-05														
A. Riffles	95%	60%	92%											
B. Pools	100%	100%	92%											
C. Thalweg	100%	90%	100%											
D. Meanders	100%	NA	100%											
E. Bed General	95%	95%	94%											
F. Bank Condition	NA	NA	73%											
G. Vanes / J Hooks, etc.	G. Vanes / J Hooks, etc. 95% 100% 71%													
H. Wads and Boulders	100%	90%	67%											

*Initial and MY1 data are for the entire project. MY2 data is broken out by reach.

Exhibit Table VIII-A. Baseline Morphology and Hydraulics Summary Cross Creek Stream Restoration - EEP Project No. 105 Reach: Cross Creek (1376 feet)																		
				Regi	onal C	urve	Pr	e-Exist	ing	Proj	ject Sti	ream						
Parameter	USG	S Gage	Data]	Interva	ıl	C	onditio	on	R	eferen	ce		Design			As-Built	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)				16.0	52.0	29.4	26.0	30.0	27.4	14.5	27.4				34.2	34.2	49.6	38.6
Width (ff)																		
BF Cross																		
Sectional Area																		
(SF)				11.6	115.0	88.6	68.8	77.1	73.2	21.1	49.1				73	67.8	113.6	70.8
BF Mean																		
Depth (ft)				1.3	6.3	2.9	2.5	3.0	2.65	0.8	2.3				2.14	1.8	2.3	2.0
BF Max Depth																		
(ft) Width/Donth							3.3	4.1	3.7	2.1	3.5				3.2	3.2	4.3	3.4
Ratio							8.8	10.3	10.0	84	34				16	173	21.7	21.0
Entrenchment							0.0	10.5	10.0	0.4	54				10	17.5	21.7	21.0
Ratio							1.25	1.9	1.6	10.5	14.9				2.7			
Bank Height																		
Ratio																		
Wetted																		
Perimeter (ft)																		
Hydraulic Padius (ff)																		
Pattern																		
Channel																		
Beltwidth (ft)									27.4	20	36		70	170		28	87	70
Radius of																		
Curvature (ft)									0	7	36		70	120		75	120	93.5
Meander																		
Wavelength									0	22	225		240	470		202	277	254
(II) Meander									0	32	323		240	4/9		285	5//	554
Width ratio									1.0	0.67	1.8		2.0	5.0		0.82	1.75	1.81
Profile																		
Riffle Length													38	177	92	10.99	60.86	27.84
Riffle Slope													0.004	0.004	0	0.0019	0.0285	0.0045
Pool Length										1.0			11.0	42.7	30.5	4.34	43.35	16.43
Pool Spacing							77	167	132	19	123		152	228	187	12.65	340.56	80.28
d50 (mm)																<0.62	5-1.0	
d84 (mm)																25-5	2.0-4.0	
Additional Rea	ich Pa	ramete	ers															
Valley Length																		1215.3
Channel																		
Length (ft)																		1442
Sinuosity							1.0	1.0	1.0	1.3	1.5				1.1			1.19
slope							0	0	0	0					0			0.0030
BF Slope							0	0	0	0	0				0			0.0021
Rosgen																		
Classification									G5,E5			C5,E5			C5			С
*Habitat Index																		
*Macro-																		
benthos																		

2.2.6 Quantitative Measures Summary

*Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

Exhibit Table VIII-B. Baseline Morphology and Hydraulics Summary Cross Creek Stream Restoration - EEP Project No. 105																			
					C1035	Rea	ach: Li	ttle Cr	oss Cr	reek (71	14 feet)	105						
				Reg	ional C	urve	Pr	e-Exist	ing	Pro	ect Sti	ream							
Parameter	USG	S Gage	Data]	Interva	ıl	C	onditio	on	R	eferen	ce		Design	ı		As-Bui	lt	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
BF Width (ft)				14.0	49.0	25.1	17.3	23.0	20.2	14.5	27.4				24.7	23.3	36.4	29.9	
Flood Prone																			
Width (ft)																			
BF Cross																			
Sectional Area				11.5	200.0	66 1	22.5	126		21.1	40.1				20	25.5	50.1	12.0	
BF Mean				11.5	200.0	00.4	33.5	45.0		21.1	49.1				30	33.3	30.1	42.0	
Depth (ft)				1.2	5.9	2.6			1.9	0.8	2.3				1.54	1.4	1.5	1.5	
BF Max Depth																			
(ft)							2.5	2.9		2.1	3.5				N/A	2.3	3.0	2.65	
Width/Depth																			
Ratio							8.9	12.1		8.4	34				16	15.3	26.5	20.9	
Entrenchment																			
Ratio									1.6	10.5	14.9				3.3				
Bank Height																			
Wetted																			
Perimeter (ft)																			
Hydraulic																			
Radius (ft)																			
Pattern																			
Channel																			
Beltwidth (ft)									20.2	20	36		50	124		32	90	61	
Radius of									0	7	26		50	06		71	124	01.5	
Meander									0	/	50		50	80		/1	134	91.5	
Wavelength																			
(ft)									0	32	325		173	346		210	380	295	
Meander																			
Width ratio									1.0	0.67	1.8		2.0	5.0		1.37	2.47	2.04	
Profile																			
Riffle Length													58	81	76	12.9	45.4	26.4	
Riffle Slope													24.2	0.006	0.006	20.2	128.5	52.2	
Pool Spacing							36	131	83	19	123		90	172	118	8.0	43.3	14.2	
Substrate							50	101	0.5	17	125		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	172	110	0.0	15.5	11.2	
d50 (mm)																.5-1.0	1.0-2.0		
																	16.0-		
d84 (mm)																1.0-2.0	22.6		
Additional Re	ach Pa	ramete	ers															((1	
Valley Length																		661	
Length (ft)																		714	
Sinuosity									1.0	1.3	1.5				1.12			1.08	
Water Surface																			
Slope	Slope								0	0	0				0.003			0.0030	
BF Slope																		0.0099	
Rosgen	Rosgen										~								
Classification								G5	<u> </u>		C5,E5			C5			С		
*Habitat Inday																			
*Macro-																			
benthos																			

*Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

Exhibit Table IXA. Cross Crea						IXA. M	lorphol Stream	ogy an Mitia	d Hydra	aulic M	onitori	ng Sum	mary					
					CIUSS	Cleak	Stream	Cross (Creek)	le/rioje	ct no.	103						
Parameter	ET-C	ross Se	ction 1				ET-C	ross Se	ction 2	ET-C	ross Se	ction 3						
	Cro	ss Secti	on 1	Cro	ss Secti	on 2	Cro	ss Secti	on 3	Cro	ss Secti	on 4						
	Sta	ntec - N	1Y2	Sta	ntec - N	1Y2	Sta	ntec - N	1Y2	Sta	ntec - N	1Y2						
D : .	1-	+66.3 Rif	fle	1	+80.3 Po	ol	10	+04.3 Ri	ffle	10	+71.0 Pc	ool						
Dimension BE Width (ft)	MY0 34.2	MY1 33.6	MY2*	MY0	MYI	MY2*	MY0	MYI 10.37	MY2*	MY0 49.6	MY1 37.8	MY2*						
Floodprone	34.2	55.0	21.0			55.4	38.0	19.57	55.47	49.0	57.0	35.62						
Width (ft)																		
(approx)	>100	91.8	>100			n/a	>100	78.37	128		101.4	n/a						
BF Cross																		
Sectional Area	(7.0	(2.7	20.02			02.10	70.0	24.6	71.01	112 (70 (111.5						
BF Mean Denth	07.8	02.7	39.92			92.18	/0.8	34.0	/1.91	113.0	/8.0	111.5						
(ft)	2.0	1.87	1.4			2.76	1.8	1.78	2.15	2.3	2.08	3.11						
BF Max Depth																		
(ft)	3.2	3.26	2.58			5.29	3.4	2.25	3.86	4.3	4.59	5.93						
Width/Depth Patio	173	17.05	15 /			12.1	21.0	10.0	15.6	21.7	18.2	11.5						
Entrenchment	17.3	17.93	13.4			14.1	21.0	10.7	15.0	21./	10.2	11.3						
Ratio	>2.9	2.73	>4.6			n/a	>1.8	4.04	3.82		2.68	n/a						
Wetted Perimeter												,						
(ft) Hydraulic radius		34.6				n/a		20.9			42.4	n/a						
(ff)		1 81				n/a		1 65			1 85	n/a						
Substrate		1.01				n/u		1.00			1.00	n/u						
d50 (mm)	<.062	0.25	0			n/a	1.0-2.0	0.37	0.32	.5-1.0	0.04	n/a						
d84 (mm)	.255	0.61	6.8			n/a	6.0-22.	0.83	3.90	1.0-2.0	18.84	n/a						
Dovomotov		7.01.(0)				0 , m) [#]		1 00 (0)						7.0 <i>5.(</i> 00	10)		X7. (00)	
Parameter	MY	7-01 (20	06)	МҮ	′-02 (20	07) [#]	МУ	2 -03 (2 ()08)	МУ	2-04 (20)09)	MY	7-05 (20	10)	М	Y+ (20 1	11)
Parameter Pattern	MY Min	7 -01 (20 Max	0 6) Med	MY Min	7 -02 (20 Max	07)[#] Med	MY Min	7 -03 (20 Max	008) Med	MY Min	2 -04 (20 Max	0 09) Med	MY Min	7 -05 (20 Max	10) Med	Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft)	MY Min 32	7 -01 (20 Max 90	0 6) Med	MY Min 52	7 -02 (20 Max 97	07) [#] Med 72	MY Min	Z -03 (20 Max	008) Med	MY Min	Z -04 (20 Max	0 09) Med	MY Min	7 -05 (20 Max	Med	M Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of	Min 32	7 -01 (20 Max 90	Med 61	MY Min 52	7 -02 (20 Max 97	07) [#] Med 72	MN Min	Z -03 (20 Max	008) Med	MN Min	7 -04 (20 Max	Med	MN Min	7 -05 (20 Max	Med	Min	Y+ (201 Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft)	Min 32 71	7-01 (20 Max 90 134	Med 61 91.5	MY Min 52 78	Max 97	07) [#] Med 72 96	Min	Z -03 (20 Max	Med	Min	7 -04 (20 Max	Med	MN Min	7-05 (20 Max	Med	Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander	Min 32 71	7-01 (20 Max 90 134	Med 61 91.5	MY Min 52 78	Max 97 126	07) [#] Med 72 96	Min Min	7 -03 (20 Max	Med	Min Min	7 -04 (20 Max	Med	Min	/- 05 (20 Max	Med	Min	Y+ (201 Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width	Min 32 71 210	Z-01 (20 Max 90 134 380	Med 61 91.5 295	MY Min 52 78 275	Max 97 126 366	07) [#] Med 72 96 339	Min Min	Z-03 (20 Max	Med	Min Min	Z-04 (20 Max	Med	Min	/-05 (20 Max	Med	Min	Y+ (20) Max	Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	MN Min 32 71 210 1.37	7-01 (20 Max 90 134 380 2.47	Med 61 91.5 295 2.04	MY Min 52 78 275 1.88	 Max 97 126 366 35.00 	07) [#] Med 72 96 339 2.70	MY Min	7-03 (20 Max	008) Med	MY Min	Max	Med	MY Min	X-05 (20 Max	Med	Min Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile	MX Min 32 71 210 1.37	7-01 (20 Max 90 134 380 2.47	Med 61 91.5 295 2.04	MY Min 52 78 275 1.88	X-02 (20 Max 97 126 366 35.00	07) [#] Med 72 96 339 2.70	MY Min	X-03 (20 Max	008) Med	MN Min	Max	Med	MN Min	X-05 (20 Max	Med	Min Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft)	MX Min 32 71 210 1.37 8	7-01 (20 Max 90 134 380 2.47 78	Med 61 91.5 295 2.04 30	MYY Min 52 78 275 1.88 47.1	Max 97 126 366 35.00 79.6	07) [#] Med 72 96 339 2.70 65.1	MY Min	Z-03 (20 Max	008) Med	MY Min	7- 04 (20 Max	Med	MX Min	X-05 (20 Max	Med	Min Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pacel Length (ft)	MX Min 32 71 210 1.37 8 0.0009 9	X-01 (20 Max 90 134 380 2.47 78 0.0067 106	Med 61 91.5 295 2.04 30 0.0035 46	MYY Min 52 78 275 1.88 47.1 0.05500 47.3	Max 97 126 366 35.00 79.6 0.0910 79.6	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0	MY Min	Max (20)	008) Med	MY Min	Z-04 (20 Max	Med	MY Min	X-05 (20 Max	Med	Min Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft)	MX Min 32 71 210 1.37 8 0.0009 9	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106	Med 61 91.5 295 2.04 30 0.0035 46	MY Min 52 78 275 1.88 47.1 0.0550 47.3	Y-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0	MN Min	Z-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	Med	MX Min	Max	10) Med	Min Min	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft)	Min 32 71 210 1.37 8 0.0009 9 27	 Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.0550 47.3 36	 7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	7-04 (20 Max	Med	MX Min	Max (200 (200)	10) Med	Min 	Y+ (20) Max	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional	Min 32 71 210 1.37 8 0.0009 9 27	X-01 (20 Max 90 134 380 2.47 78 0.0067 106 203	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.0550 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	/-03 (20 Max	008) Med	MY Min	7-04 (20 Max	009) Med	MX Min	X-05 (20 Max	10) Med	Min 	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters	Min 32 71 210 1.37 8 0.0009 9 27	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.0550 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	009) Med	MX Min	X-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length	Min 32 71 210 1.37 8 0.0009 9 27	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.05500 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	009) Med	MX Min	/-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft)	Min 32 71 210 1.37 8 0.0009 9 27	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.05500 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	7-04 (20 Max	09) Med	MY Min	/-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length	MIN Min 32 71 210 1.37 8 0.0009 9 27	A-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3	Med 61 91.5 295 2.04 30 0.0035 46 73	MYY Min 52 78 275 1.88 47.1 0.0550 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	/-03 (20 Max	008) Med	MY Min	7-04 (20 Max	009) Med	MX Min	X-05 (20 Max	10) Med	Min 	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft)	Min 32 71 210 1.37 8 0.0009 9 27	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3 1442 1.10	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.0550 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3 1442 1.10	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	009) Med	MX Min	X-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface	MIN Min 32 71 210 1.37 8 0.0009 9 27 	 Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3 1442 1.19 	Med 61 91.5 295 2.04 30 0.0035 46 73	MYY Min 52 78 275 1.88 47.1 0.0550 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3 1442 1.19	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	009) Med	MY Min	X-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft)	MIN Min 32 71 210 1.37 8 0.0009 9 27	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3 1442 1.19 0.00194	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.0550 47.3 36	Y-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3 1442 1.19 0.0024	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	009) Med	MX Min	X-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft) BF Slope (ft/ft)	Min 32 71 210 1.37 8 0.0009 9 27	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3 1442 1.19 0.00194 0.0021	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.0550 47.3 36	Y-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3 1442 1.19 0.0024 0.0024	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	Z-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	Med	MY Min	Z-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft) BF Slope (ft/ft) Rosgen Claceif exti	MY Min 32 71 210 1.37 8 0.0009 9 27 27	Z-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3 1442 1.19 0.0019 ² 0.0021	Med 61 91.5 295 2.04 30 0.0035 46 73	MY Min 52 78 275 1.88 47.1 0.0550 47.3 36	Y-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3 1442 1.19 0.0024 0.0031	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86	MY Min	/-03 (20 Max	008) Med	MY Min	Z-04 (20 Max	Med	MY Min	X-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med
Parameter Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft) BF Slope (ft/ft) Rosgen Classification Habitat Index	MIN Min 32 71 210 1.37 8 0.0009 9 27 27	A-01 (20 Max 90 134 380 2.47 78 0.0067 106 203 1215.3 1442 1.19 0.00194 0.00194 0.0021 C n/a	Med 61 91.5 295 2.04 30 0.0035 46 73	MYY Min 52 78 275 1.88 47.1 0.0550 47.3 36	7-02 (20 Max 97 126 366 35.00 79.6 0.0910 79.6 147 1215.3 1442 1.19 0.0024 0.0031 C n/a	07) [#] Med 72 96 339 2.70 65.1 0.1100 65.0 86		Z-03 (20 Max	008) Med		Z-04 (20 Max	009) Med		X-05 (20 Max	10) Med	Min Min	Y+ (20)	11) Med

* EarthTech (ET) MY1 Cross Section 1 is near Stantec MY2 Cross Section 1, Stantec Cross Section 2 is new

ET MY1 Cross Section 2 is near Stantec MY2 Cross Section 3, and ET MY1 Cross Section 3 is near Stantec MY2 Cross Section 4

[#] Even though the Cross Sections are not in identical spots, ranges for the reach may be compared.

Exhibit Tab				Table	IXB. M	lorphol	ogy and	l Hydra	ulic M	onitorii	ng Sum	mary						
					Cross	Creak	Stream (Lit	i Mitiga	stion Si	te/Proje k)	ect No.	105						
Parameter	ET-C	ross Se	ction 4	ET-C	ross Se	ction 5	(2.0											
	Cro	ss Secti	on 6	Cro	ss Secti	on 5												
	Sta	ntec - N	1Y2	Sta	ntec - N	1Y2												
Dimonsion	1 MV0	+94 Riff	le MV2*	MV0	2+91 Poo	I MV2*	MV0	MV1	MV2	MV0	MV1	MV2	MV0	MV1	MV2	MV0	MV1	MV2
BF Width (ft)	36.4	67	35.78	23.3	17.5	24.1	NI I U	IVI I I	IVI I Z	NI I U	101 1 1	IVI I Z	NI I U	IVI I I	IVI I 2	NI I U	IVI I I	IVI I Z
Floodprone																		
Width (ft)		100 5	100	00.0	90.4													
(approx) BF Cross		100.5	108	90.0	89.4	n/a												
Sectional Area																		
(ft ²)	50.1	69	58.99	35.5	23.4	35.91												
BF Mean Depth	1.4	1.03	1.65	15	1 36	1 /0												
BF Max Depth	1.4	1.05	1.05	1.5	1.30	1.49												
(ft)	3.0	3.16	3.8	2.3	2.61	3.0												
Width/Depth Ratio	26.5	65 1	21.7	15.2	12.0	16.2												
Entrenchment	20.5	05.1	21.7	15.5	12.9	10.2												
Ratio		1.5	3.02	3.9	5.01	n/a												
Wetted Perimeter		69.2	n/a		22.5	n/a												
Hydraulic radius		07.2	11/ a		22.5	11/ u												
(ft)		1.0	n/a		1.06	n/a												
Substrate	062-12	0.42	0	5-1.0	0.35	n/a												
d84 (mm)	2.0-4.0	10.97	11	2.0-4.0	0.97	n/a												
				-			-						-			-		
Parameter	MY	2 -01 (2 (06)	MY	-02 (20	07) [#]	MY	2 -03 (2 0	08)	MY	2 -04 (2 0	09)	MY	2 -05 (2 0	10)	М	Y+ (201	11)
Channel	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Beltwidth (ft)	32	90	61	59	92	71												
Radius of						71												
	71	124	01.5	(7	00	70												
Curvature (ft) Meander	71	134	91.5	67	90	79												
Curvature (ft) Meander Wavelength (ft)	71 210	134 380	91.5 295	67 272	90 329	79 300												
Curvature (ft) Meander Wavelength (ft) Meander Width	71 210	134 380	91.5 295	67 272	90 329	79 300												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	71 210 1.37	134 380 2.47	91.5 295 2.04	67 272 1.52	90 329 2.36	79 300 1.90												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile	71 210 1.37	134 380 2.47	91.5 295 2.04	67 272 1.52	90 329 2.36	79 300 1.90												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile	71 210 1.37 10	134 380 2.47 64	91.5 295 2.04 23	67 272 1.52	90 329 2.36	79 300 1.90												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft)	71 210 1.37 10 0.0011 12	134 380 2.47 64 0.0145 67	91.5 295 2.04 23 0.0056 42.8	67 272 1.52 0.0540 29	90 329 2.36 0.1090 66	79 300 1.90 0.0890 45												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft)	71 210 1.37 10 0.0011 12	134 380 2.47 64 0.0145 67	91.5 295 2.04 23 0.0056 42.8	67 272 1.52 0.0540 29	90 329 2.36 0.1090 66	79 300 1.90 0.0890 45												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft)	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46 661	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85 661	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46 661 714	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85 661 714	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46 661 714 1.08	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85 661 714 1	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Length (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft)	71 210 1.37 10 0.0011 12 10 	134 380 2.47 64 0.0145 67 46 661 714 1.08 0.00287	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85 661 714 1 0.0026	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft) BF Slope (ft/ft)	71 210 1.37 10 0.0011 12 10	134 380 2.47 64 0.0145 67 46 661 714 1.08 0.00287 0.0099	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85 661 714 1 0.0026 0.0026	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft) BF Slope (ft/ft) Rosgen	71 210 1.37 10 0.0011 12 10 (134 380 2.47 64 0.0145 67 46 661 714 1.08 0.00287 0.0099	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85 661 714 1 0.0026 0.0026	79 300 1.90 0.0890 45 55												
Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft) Pool Spacing (ft) Additional Reach Parameters Valley Length (ft) Channel Length (ft) Sinousity Water Surface Slope (ft/ft) BF Slope (ft/ft) Rosgen Classification Habitat Index	71 210 1.37 10 0.0011 12 10 (0) (0) (0) (0) (0) (0) (0) (0	134 380 2.47 64 0.0145 67 46 661 714 1.08 0.00287 0.0099 C n/a	91.5 295 2.04 23 0.0056 42.8 30	67 272 1.52 0.0540 29 23	90 329 2.36 0.1090 66 85 661 714 1 0.0026 0.0026 C n/a	79 300 1.90 0.0890 45 55												

* EarthTech (ET) MY1 Cross Section 4 is near Stantec MY2 Cross Section 6

and ET MY1 Cross Section 5 is near Stantec MY2 Cross Section 5

[#] Even though the Cross Sections are not in identical spots, ranges for the reach may be compared.

Harrelson, C.C., C.L. Rawlins and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. United States Department of Agriculture, Fort Collins, CO.

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm).

NCEEP. 2006. Content, Format and Data Requirements for EEP Monitoring Reports. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.2 November 16, 2006.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

USACE. 2003. Stream Mitigation Guidelines. United States Army Corps of Engineers, Wilmington Regulatory District; North Carolina Division of Water Quality; United Stated Environmental Protection Agency, Region IV; Natural Resources Conservation Service; and North Carolina Wildlife Resources Commission. April 2003.

Weakley, Alan S. 2007. Flora of the Carolinas, Virginia, Georgia, and surrounding areas. University of North Carolina Herbarium. Chapel Hill, NC. Working draft of January 11, 2007.

APPENDIX A – VEGETATION RAW DATA & PHOTOS

A.1 VEGETATION DATA TABLES

EXHIBIT TABLE A1. VEGETATION METADATA

Report Prepared By	Amber Coleman
Date Prepared	11/19/2007 19:32
database name	CrossCreek_CVS_EEP_EntryTool_v220.mdb
database location	U:\171300168
computer name	COLEMANA
DESCRIPTION OF WORKSHEETS I	N THIS DOCUMENT
	This worksheet, which is a summary of the project and the project
Metadata	data.
	Each project is listed with its PLANTED stems, for each year. This
Proj, planted	excludes live stakes and lists stems per acre.
	Each project is listed with its TOTAL stems, for each year. This
	includes live stakes, all planted stems, and all natural/volunteer
Proj, total stems	stems. Listed in stems per acre.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences
Damage	and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	Count of total living stems of each species (planted and natural
	volunteers combined) for each plot; dead and missing stems are
ALL Stems by Plot and spp	excluded.
PROJECT SUMMARY	
Project Code	105
project Name	Cross Creek
Description	Stream Restoration in Fayetteville
River Basin	Cape Fear
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	8

	Species	4	3	2	1	0	Missing
	Alnus serrulata	12	4				
	Aronia arbutifolia		4				
	Callicarpa americana	5	4	1			
	Carpinus caroliniana var. caroliniana		2	2	2		
	Cercis canadensis var. canadensis		2				
	Clethra alnifolia		1	1	1		
	Fothergilla gardenii	1	1				
	Fraxinus pennsylvanica	3	1	1	1		
	llex decidua var. decidua	6	1	2			
	llex glabra	2		1			
	Nyssa sylvatica	3	3	1	1		
	Populus heterophylla	3	1				
	Quercus lyrata		4				
	Quercus phellos	2	2		1		
	Sambucus canadensis		1				
	Taxodium distichum	11	3	1			
	Ulmus americana var. americana	2	3	1			
	Viburnum nudum	2	3				
	Morella cerifera	6	2	1			
	Quercus shumardii var. shumardii		2				
	Quercus	4	1	2	1		
	Unknown			1		5	
TOT:	22	62	45	15	7	5	

EXHIBIT TABLE A2. VEGETATION VIGOR BY SPECIES

EXHIBIT TABLE A3. VEGETATION DAMAGE BY SPECIES

	Sec.	4110-	Ino de Car	Droi damage) alegories	Out	UniUnita	Vincoun Own Anite	e Stangulation
	Alnus serrulata	16	13			Í	3	ſ
	Aronia arbutifolia	4	4					
	Callicarpa americana	10	9		1			
	Carpinus caroliniana var. caroliniana	6	1	3			2	
	Cercis canadensis var. canadensis	2	1				1	
	Clethra alnifolia	3	1	2				
	Fothergilla gardenii	2	1		1			
	Fraxinus pennsylvanica	6	4	2				
	llex decidua var. decidua	9	7	2				
	llex glabra	3	2	1				
	Morella cerifera	9	6				3	
	Nyssa sylvatica	8	5	1			2	
	Populus heterophylla	4	4					
	Quercus	8	5	2		1		
	Quercus lyrata	4	2				2	
	Quercus phellos	5	3	1			1	
	Quercus shumardii var. shumardii	2	1				1	
	Sambucus canadensis	1					1	
	Taxodium distichum	15	15					
	Ulmus americana var. americana	6	5		1			
	Unknown	6		1		5		
	Viburnum nudum	5	4				1	
TOT:	22	134	93	15	3	6	17	

EXHIE	BIT TABLE A4. VEGET	ΤΑΤΙΟ	N D	AM/	٩GE	ΒY	PLO	т
	olor	411.5	Un de la de	Dr. daman. Categor.	On On Sel Ties	Unite	Victorin Marine Ani	ile Stangulation
	0105-01-0101-year:2	17	17					ĺ
	0105-01-0102-year:2	31	31					
	0105-01-0103-year:2	14	11		2	1		
	0105-01-0104-year:2	12	7	5				
	0105-01-0105-year:2	24	11	9		4		
	0105-01-0106-year:2	11	10	1				
	0105-01-0107-year:2	11	2			1	8	
	0105-01-0108-year:2	14	4		1		9	
TOT:	8	134	93	15	3	6	17	

EXHIBIT TABLE A5-A. STEM COUNT BY PLOT AND SPECIES

		/	nted 2	Stems	ms	5.07.01	5.01.01. Year.2	5.07.02 Vear:2	5.07.03. Vear	5.01.04 Vear.	5.07.05. Vear.	5.07.05. Year.	501.0108 501.0108 91891:2
	Species	ZOZ Jeso	<i>a</i> <i>x</i>	av.o.*	0/0* Ste	010	010,010	0/0,0/0	010,010	010	010	010	010
	Alnus serrulata	16	5	3.2	1	7	3			1		4	
	Aronia arbutifolia	4	2	2					3			1	
	Callicarpa americana	10	4	2.5	2	4	3		1				
S	Clethra alnifolia	3	2	1.5					2		1		
ĝ.	Fothergilla gardenii	2	2	1	1							1	
l H	llex decidua var. decidua	9	4	2.25	2	3	2	2					
	llex glabra	3	3	1	1	1			1				
	Morella cerifera	9	5	1.8	1	2			2		2	2	
	Sambucus canadensis	1	1	1							1		
	Viburnum nudum	5	4	1.25	1	1			2		1		
	Carpinus caroliniana var. caroliniana	6	4	1.5				2	2		1	1	
	Cercis canadensis var. canadensis	2	2	1		1					1		
	Fraxinus pennsylvanica	6	4	1.5	2			1	1	2			
	Nyssa sylvatica	8	4	2		3	1		2			2	
	Populus heterophylla	4	2	2		2				2			
ses	Quercus	8	3	2.67			1	5	2				
L L	Quercus lyrata	4	4	1					1	1	1	1	
-	Quercus phellos	5	4	1.25	1	1		2				1	
	Quercus shumardii var. shumardii	2	2	1							1	1	
	Taxodium distichum	15	4	3.75	3	5	2			5			
	Ulmus americana var. americana	6	4	1.5	2	1	2				1		
	Unknown	1	1	1					1				
TOT:	22	129	22		17	31	14	12	20	11	10	14	
	Total Planted Stems/Acre				688	1255	567	486	809	445	405	567	
	Trees/Acre				324	526	243	405	364	405	202	243	

	Exhib Cross Cree	it Table A6. Vegeta k Stream Restorati	tion Problem Areas on - EEP Project No. 105		
MAJOR PROBLEM AREA	S				
Feature/Issue	Stream Reach	Station # / Range	Probable Cause	ID	Photo #
	Little Cross Creek	Right bank - top of bank to edge of easement	Pre-existing or neighboring populations		1
Kudzu	Cross Creek	Throughout - but primarily near middle to end of reach	invaded	VP1	2
MINOR PROBLEM AREA	Ś	1.00011			
Feature/Issue	Stream Reach	Station # / Range	Probable Cause	ID	Photo #
Chinese Privet	Little Cross Creek	Upper end of project	Pre-existing or neighboring populations invaded	VP2	NA
Mimosa	Both	Throughout	Pre-existing or neighboring populations invaded	NA	NA
Johnson Grass	Cross Creek	Lower end of project	Seed source either already present or likely washed in from stream	NA	NA

A.2 VEGETATION PROBLEM AREA PHOTOS

Photo 1: Kudzu invasion near Veg Plot 107 (10/1/07)

Photo 2: Kudzu on either side of the channel near Veg Plot 102 (10/2/07)

A.3 VEGETATION MONITORING PLOT PHOTOS

Photo Station 7 – Veg plot 107 looking west (10/1/07)

Photo Station 8 – Veg plot 107 looking southwest (10/1/07)

Photo Station 9 – Veg plot 108 looking northwest (10/2/07)

Photo Station 10 - Veg plot 108 looking west (10/2/07)

Photo Station 11 – Veg plot 105 looking northeast (9/20/07)

Photo Station 12 – Veg plot 105 looking north (9/20/07)

Photo Station 13- Veg plot 104 looking north (10/1/07)

Photo Station 14 – Veg plot 104 looking northwest (10/1/07)

Photo Station 15 - Veg plot 103 looking northwest (10/1/07)

Photo Station 16 - Veg plot 103 looking west (10/1/07)

Photo Station 17 – Veg plot 102 looking northwest (10/1/07)

Photo Station 18 – Veg plot 102 looking west (10/1/07)

Photo Station 19 – Veg plot 101 looking north (10/1/07)

Photo Station 20 - Veg plot 101 looking northwest (10/1/07)

Photo Station 21 – Veg plot 106 looking west (10/1/07)

Photo Station 22 - Veg plot 106 looking southwest (10/1/07)

APPENDIX B – GEOMORPHOLOGIC RAW DATA

B.1 CURRENT CONDITION PLAN VIEW (STREAM)

Please see the Integrated Current Condition Plan View in Appendix D for stream problem areas.

B.2 STREAM PROBLEM AREA TABLE

	Exhi	ibit Table B1. Strea	m Problem Areas		
	Cross Cree	k Stream Restorati	on - EEP Project No. 105		
MAJOR PROBLEM AREA	S				
Feature/Issue	Stream Reach	Station # / Range	Probable Cause	ID	Photo #
Stormwater Channel Failure	Cross Creek	~22+00	Channel is too small to handle flow	SP 9	1-3
Wetland Pond Failure	Cross Creek	~23+00	Failure of adjacent stormwater channel	SP 10	4-5
MINOR PROBLEM AREA	S				
Feature/Issue	Stream Reach	Station # / Range	Probable Cause	ID	Photo #
Structure Failure	Little Cross Creek	10+50 - 11+80	improper design or installation	SP 2-4	6
	Cross Creek	19+25	improper design or installation	SP 16	0
Rootwad Failure	Little Cross Creek	14+75	erosion around rootwad	SP 7	
			erosion around vane structure due to		
	Cross Creek	15+50	poor fill material at the former channel	SP 11	7
			intersect		
	Cross Creek	21+05	erosion around rootwad	SP 19	
Toe Scour	Little Cross Creek	10+20	scour from culvert outlet	SP 1	
	Cross Creek	18+00; 21+00	confluence;	SP 13, 18	8
			scour upstream from j-hook		
Bank Erosion	Little Cross Creek	13+50; 16+75		SP 5-6, 8	
	Cross Crook	16+10; 18+00 -		SP 12, 14	9
	Closs Creek	18+75; 20+30		15, 17	

B.3 REPRESENTATIVE STREAM PROBLEM AREA PHOTOS

Photo 1. (SP 9) Stormwater outlet pipe entering into the design plunge basin (7/4/07)

Photo 2. (SP 9) Bank erosion and migration of the design trapezoidal plunge basin (7/4/07)

Photo 3. (SP 9) Outlet failure of the stormwater channel into the main reach (7/4/07)

Photo 4. (SP 10) Outlet failure of the wetland pond into the main reach (7/4/07)

Photo 5. (SP 10) Bank erosion, migration, and failure of the wetland pond (7/4/07)

Photo 6. (SP 2-4, 16) Example of poorly built structure leading to structural failure and causing erosion on the banks (7/4/07)

Photo 7. (SPA 7, 11, 19) Example of root wad failure - scouring around a root wad structure (7/4/07)

Photo 8. (SPA 1, 13, 18) Example of toe scouring around meandering bends (7/4/07)

Photo 9. (SPA 5, 6, 8, 12, 14, 15, 17) Example of bank erosion (7/4/07)

B.4 STREAM PHOTO STATION PHOTOS

Photo Station 1. Cross-section #5 looking downstream (7/4/07)

Photo Station 2. Cross-section #6 looking upstream (7/4/07)

Photo Station 3. Cross-section #1 looking downstream (6/28/07)

Photo Station 4. Cross-section #2 looking downstream (6/28/07)

Photo Station 5. Cross-section #3 looking downstream (6/28/07)

Photo Station 6. Cross-section #4 looking downstream (6/28/07)

	Exhibit Tabla B 2.1 Visual	Mornhologica	Stability A	ssassmant		
	Cross Creek Stream R	storation - FF	P Project N	Lo 105		
	(C	ross Creek)		0.105		
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number/Feet in Unstable State	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	6	8		75%	
	2. Armor stable (eg no displacement?)	N/A	N/A			
	3. Facet grade appears stable?4. Minimal evidence of	7 N/A	8 N/A		88%	
	embedding/fining? 5. Length appropiate?	7	8		88%	83%
B. Pools	 Present? (e.g. not subject to severe aggrad. or migrat.?) Sufficiently deep (Max Pool D'Mean 	7	8		88%	
	Bkf > 1.6?) 3. Length appropriate?	6	8		75% 75%	79%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	8	8		100%	
	2. Downstream of meander (glide/inflection) centering?	7	8		88%	94%
D. Meanders	limited/controlled erosion?	6	8		75%	
	2. Of those eroding, # w/concomitant point bar formation?	1	2		50%	
	3. Apparent Rc within spec?4. Sufficient floodplain access and	8	8		100%	
	relief?	8	8		100%	81%
E. Bed General	areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head-		1400	50	96%	
	cutting?		1400	150	89%	86%
F. Bank	slumping bank?		1400	250	82%	82%
G. Vanes	 Free of back or arm scour? Height appropriate? 	7	11		64% 73%	
	3. Angle and geometry appear appropriate?	7	11		64%	
	4. Free of piping or other structural failures?	9	11		82%	70%
H. Wads/Boulders	1. Free of scour?2. Footing stable?	1 N/A	4 N/A		25%	25%

B.5 QUALITATIVE VISUAL STABILITY ASSESSMENT

	Exhibit Table B.2.2. Visual I	Morphological	Stability A	Assessment		
	Cross Creek Stream Res	storation - EE	P Project N	lo. 105		
	(Little	Cross Creek)				
		(# Stable)	Total	Total	0/ Daufaum	Feature
Footuro Cotogory	Metric (per As-built and reference	Number	Number	Number/Feet	70 Ferioriii	Perform.
reature Category	baselines)	Performing	per As-	in Unstable	Condition	Mean or
		as Intended	built	State	Condition	Total
A. Riffles	1. Present?	4	4		100%	
	2. Armor stable (eg no	NI/A	NI/A			
	displacement?)	11/74	1N/A			
	3. Facet grade appears stable?	4	4		100%	
	4. Minimal evidence of	N/A	N/A			
	embedding/fining?	11/74	11/7			
	5. Length appropiate?	3	4		75%	92%
	1. Present? (e.g. not subject to severe					
B. Pools	aggrad. or migrat.?)	4	4		100%	
	2. Sufficiently deep (Max Pool D:Mean					
	Bkf > 1.6?)	4	4		100%	0.00/
	3. Length appropriate?	3	4		/5%	92%
	1. Upstream of meander bend				1000/	
C. Thalweg	(run/inflection) centering?	4	4		100%	
	2. Downstream of meander		4		1000/	1000/
	(glide/inflection) centering?	4	4		100%	100%
	1. Outer bend in state of		4		1000/	
D. Meanders	limited/controlled erosion?	4	4		100%	
	2 Of these and in a # w/assessitent		NT/ A			
	2. Of those croding, # w/concommant	IN/A	IN/A			
	2 Apparent Pa within space	1	1		100%	
	4. Sufficient floodplain access and	4	4		10070	
	relief?	4	4		100%	100%
	1 General channel bed aggradation	_	T		10070	10070
E. Bed General	areas (bar formation)		650	40	94%	
E. Dea General	2. Channel bed degradation - areas of		0.50	10	2170	
	increasing down-cutting or head-					
	cutting?		650	0	100%	94%
	1. Actively eroding, wasting, or					
F. Bank	slumping bank?		4400	1200	73%	73%
G. Vanes	1. Free of back or arm scour?	4	6		67%	
	2. Height appropriate?	4	6		67%	
	3. Angle and geometry appear					
	appropriate?	4	6		67%	
	4. Free of piping or other structural					
	failures?	5	6		83%	71%
H. Wads/Boulders	1. Free of scour?	2	3		67%	
	2. Footing stable?	N/A	N/A			67%

B.6 CROSS SECTION PLOTS

See following pages for the Cross Section Plots.

			Photo of Cross-Section 5 - Reach 2 - Looking Downstream $\circledast STA$ 3+11	Year 5 - 2010 Year 4 - 2009 Year 3 - 2008 Year 1 - 2006 AS-BUILT 2008 With Weath Depth 149 ná ná ná Max Both 149 ná ná ná Max Depth 16.18 ná ná ná
	AS-BUILT 2005 AS-BUILT Survey Station Elevation Notes			
	Year I - 2006 2006 Survey Station Elevation Notes			
r ear 02-1/4/2007 Sidelspach, Jean, Geenen	Year 2 - 2007 2007 Survey Station Elevation Notes 3.32 9.629 1.23 94.53 21.31 94.78 3.13 94.78	7,84 9,75 33.7 93.15 66.33 9.13 65.5 91.53 72.1 90.43 Left Pin 77.69 90.38 Left Pin 77.69 90.38 Left Pin 95.9 89.24 95.9 89.24 95.1 89.24 95.2 88.59 95.2 88.59	98.5 87.67 100.51 87.56	102.1 87.6 102.3 87.75 103.8 87.75 104.4 87.94 106.14 88.38 106.14 88.38 106.14 88.38 106.14 88.38 106.14 88.38 106.14 88.38 106.74 88.38 107.4 88.38 107.4 88.38 107.4 88.38 108.7 90.57 111.8 90.52 111.8 90.55 113.2 90.57 121.28 90.57 121.28 90.57 132.26 90.57 132.26 90.57 133.19 90.52 133.51 90.52 135.4 90.57 146.17 90.52 156.8 95.82 156.8 95.82
Pool Date: : Crew: E	Year 3- 2008 2008 Survey Station Elevation Notes			
n 5 reaure: 1	Year 4 - 2009 2009 Survey tation Elevation Notes			, ,
Troject Name: Cross Creek Cross Section: Cross Sectio	Year 5 - 2010 2010 Survey Station Elevation Notes St			

B.7 LONGITUDINAL PLOTS

B.8 PEBBLE COUNT DISTRIBUTION

Cross Creek Cross Section 1 Pebble Count

Material	Size Range (mm)	Count	
silt/clay	0 - 0.062	10	
very fine sand	0.062 - 0.125	3	
fine sand	0.125 - 0.25	2	
medium sand	0.25 - 0.5	25	
coarse sand	0.5 - 1	0	
very coarse sand	1 - 2	0	
very fine gravel	2 - 4	0	
fine gravel	4 - 6	1	
fine gravel	6 - 8	4	
medium gravel	8 - 11	2	
medium gravel	11 - 16	2	
coarse gravel	16 - 22	2	
coarse gravel	22 - 32	0	
very coarse gravel	32 - 45	0	
very coarse gravel	45 - 64	0	
small cobble	64 - 90	0	
medium cobble	90 - 128	0	
large cobble	128 - 180	0	
very large cobble	180 - 256	0	
small boulder	256 - 362	0	
small boulder	362 - 512	0	
medium boulder	512 - 1024	0	
large boulder	1024 - 2048	0	
very large boulder	2048 - 4096	0	
	total particle count:	51	
bedrock			
clay hardpan			
detritus/wood			
artificial			
	total count:	51	
Note: XS1 - Cross Creek			

Size (mm)	Size Dist	ribution		Гуре	
D16	0.062	mean	0.6	silt/clay	20%	
D35	0.27	dispersion	13.0	sand	59%	
D50	0.33	skewness	0.21	gravel	22%	
D65	0.41			cobble	0%	
D84	6.8			boulder	0%	
D95	14					

Cross Creek Cross Section 3 Pebble Count

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	15
very fine sand	0.062 - 0.125	6
fine sand	0.125 - 0.25	0
medium sand	0.25 - 0.5	22
coarse sand	0.5 - 1	0
very coarse sand	1 - 2	2
very fine gravel	2 - 4	3
fine gravel	4 - 6	1
fine gravel	6 - 8	1
medium gravel	8 - 11	3
medium gravel	11 - 16	3
coarse gravel	16 - 22	1
coarse gravel	22 - 32	0
very coarse gravel	32 - 45	0
very coarse gravel	45 - 64	0
small cobble	64 - 90	0
medium cobble	90 - 128	0
large cobble	128 - 180	0
very large cobble	180 - 256	0
small boulder	256 - 362	0
small boulder	362 - 512	0
medium boulder	512 - 1024	0
large boulder	1024 - 2048	0
very large boulder	2048 - 4096	0
	total particle count:	57
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	57
Note: XS3 - Cro	ss Creek	

Size (mm)	Size Distribution	Туре
D16 0.062	mean 0.5	silt/clay 26%
D35 0.11	dispersion 8.7	sand 53%
D50 0.32	skewness 0.14	gravel 21%
D65 0.41		cobble 0%
D84 3.9		boulder 0%
D95 13		

Cross Creek Cross Section 6 Pebble Count

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	0
very fine sand	0.062 - 0.125	4
fine sand	0.125 - 0.25	3
medium sand	0.25 - 0.5	20
coarse sand	0.5 - 1	2
very coarse sand	1 - 2	0
very fine gravel	2 - 4	2
fine gravel	4 - 6	5
fine gravel	6 - 8	5
medium gravel	8 - 11	1
medium gravel	11 - 16	1
coarse gravel	16 - 22	5
coarse gravel	22 - 32	0
very coarse gravel	32 - 45	1
very coarse gravel	45 - 64	0
small cobble	64 - 90	1
medium cobble	90 - 128	0
large cobble	128 - 180	0
very large cobble	180 - 256	0
small boulder	256 - 362	0
small boulder	362 - 512	0
medium boulder	512 - 1024	0
large boulder	1024 - 2048	0
very large boulder	2048 - 4096	0
	total particle count:	50
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	50
Note: XS6 - Cro	ss Creek	

Size (n	nm)	Size Dist	ribution	,	Гуре	
D16	0.26	mean	1.7	silt/clay	0%	
D35	0.36	dispersion	12.6	sand	58%	
D50	0.47	skewness	0.44	gravel	40%	
D65	4.5			cobble	2%	
D84	11			boulder	0%	
D95	21					

APPENDIX C – WETLAND RAW DATA

Appendix C. Wetland Raw Data (N/A)

Wetlands were not restored at the Cross Creek Stream Restoration Site.

APPENDIX D – CURRENT CONDITION PLAN VIEW

Appendix D. Current Condition Plan View

See following page for Current Condition Plan View Map.

TION PIN C	OORDINATES		90/	
ong	Lat		01/2	DAT
78.891863	35.067308		0 m	×
-78.891863	35,06738		X	5
-78.891903	35.067097		DAB	DRN
-78.892061	35,067059			
-78.891713	35.065326			
-78.891837	35.065356			
78 891283	35.064961			
-78.891351	35.064861			
-78.892872	35,066592			
-78 89273	35.066675			SNO
78 892642	35.066454			EMSI
78 892593	35.066617			œ
10.002000	00.000017		NOIS	
PIN COOF	RDINATES		2 DE	
ong	Lat		NOIS	
-78.89183	9 35.065273		REA A	
-78.89194	2 35.065352		RAFI	
-78.89184	2 35.06573		0	
-78.8919	9 35.065747		-	NG
-78.89190	8 35.0658			5 <u>5</u>
-78 89204	9 35 065808			Frank
-78 89200	9 35 066207		_	5 5 5 5
-78 89208	3 35 06632			801 J 2760 6865 7024
-78 80100	35 067242			0.00, 10, 10, 10, 10, 10, 10, 10, 10, 10,
78,80204	3 35.007242			ulte ulte delph dr. 91 ax. 91 ww.st
-78.89201	3 35.067371			NORFES
-78.89129	9 35.064845			
-/8.89144	7 35.064824			>
-78.8925	7 35.066475		~	JΕΛ
-78.892703	3 35.066407		02	>
-78.89238	3 35.066258		0	AN.
-78.89252	5 35.066291		× ő,	d l
H4 1 23+05			CROSS CF STREAM RESTORA	CURRENT CONDITION
FILL EXISTIN FUNCTION FOR SOUTH FOR THE SPREADER SASS ''S STRUCTURE DET ALS	PT 21, 22 CATION OF PHOPOSED I 106 ANDERAPE DETAILS G OTCH ROCK SILT S OLE SEE DETAILS RE STONE	COO HEEN &	CREEK	ARTH TECH CONSTRUCTION PLANS IPDATED 1/4/04
STAGINO AREA	FSIG. FEICE		CROSS	SOURCE - E STREAM RESTORATION C-3, 12/24/03, 1
10- 1	SCALE		DATE	
- 50	0	50 100	08 PROJECT NO	/03/07
	and the second		Constant days	
- 1	HOSEN NOS		CROSS	SCREEK.dwg
-			SHEET NO.	
			DRAWING NO.	
adder man the				